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Abstract

As a natural product, honey has been prone to adulteration. Adulteration of honey by substituting with cheap invert sugars is a
critical issue in the honey industry. Fourier Transform (FT) Raman Spectroscopy was used to detect adulterants such as cane and

beet invert in honey. FT Ra man spectrum of adulterated samples were characterized and the region between 200 and 1600 cm�1

(representing carbohydrates and amino acid fractions) was used for quantitative and discriminant analysis. Partial least squares,
and principal component regression analysis were used for quantitative analysis while linear discriminant analysis and canonical
variate analysis (CVA) were used for discriminant analysis. FT-Raman spectroscopy was efficient in predicting beet and cane invert

adulterants (R2>0.91) in all three floral types of honey considered. Classification of adulterants in honey using CVA gave a mini-
mum classification accuracy of about 96%. # 2002 Published by Elsevier Science Ltd.
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1. Introduction

Honey, a levorotatory carbohydrate rich product is
produced by honeybees naturally form the nectar col-
lected from flowers of different plants. Secretary pro-
ducts of bees convert nectar into honey. Normally
honey contains 12.4–20.3% moisture and 60.7–77.8%
sugars, of which about 0–2% may be sucrose, 25.2–
35.3% glucose, and 33.3–43.0% fructose and less than
0.25% of ash. Honey has always been an easy target of
adulterators for economic gains. Many adulterants
including acid-invert syrups, corn syrups, sugar, starch,
dextrin are reported (Singhal, Kulkarni, & Rege, 1997).
The most known adulterants are cane and beet invert
syrups, which can be tailored to mimic the natural
sucrose–glucose–fructose profile of honey and are
usually difficult to detect. Honey adulteration is difficult
to detect due to high variability of composition among
honey from different floral and geographical origins.

Detection of invert syrups in honey has been a pro-
blem for more than a century. The addition of a mod-

erate amount of invert syrup does not cause fructose
and glucose levels to fall outside the normal range of
honey. Hydroxy methyl furfural (HMF), a product of
acid inversion is used as an index to detect the presence
of invert syrup in honey by many investigators (Singhal,
et al, 1997). Recognizing the fact that HMF arises from
heating or even storage of honey (Perez-Arquillue,
Conchello, Arino, Juan, & Herrera, 1994) its validity as
an adulterant indicator has been questioned. Other
honey authenticity tests are being done by using differ-
ent techniques such as spectroscopy, isotope ratio,
chromatography, and trace metal analysis. Conven-
tional sugar profiling of sucrose–glucose–fructose ratios
by enzymatic and chromatographic methods such as
high-performance liquid chromatography (HPLC) have
been used to identify outliers from the prescribed stan-
dard, addition of invert syrup may also be detected
indirectly by examining the oligosaccharides present.
These oligosachharides are formed as impurities during
sugar hydrolysis by a process called inversion. A simple
and rapid method for spectrophotometric discrimina-
tion of monosaccharides from the oligosaccharide frac-
tion in fruit juice, jam, syrup and honey was proposed
(Caceres, Cardenas, Gallego, & Valcarcel, 2000). How-
ever, this approach was considered inadequate because
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of the amount of naturally occurring minor poly-
saccharide content, which are believed to rise from the
transglucosylic activity of the natural enzymes produced
by honeybees on plant sugars.

A microscopic procedure was described to detect
adulteration of honey with cane sugar, acid-hydrolyzed
cane sugar syrup, or with honey obtained from feeding
sugars to bees (Kerkvlier, Shrestha, Tuladhar, & Man-
andhar, 1995). Profiles of different amino acids such as
phenylalanine, aspartic acid and proline were also
proved to be of great importance for authentication of
honey (Davis, 1975). A recent approach is based on the
differences in the ratio of 13C to 12C honey and invert
syrups. Inverts such as corn syrup are slightly enriched
in 13C compared to honey. This difference is caused by
the fractionation of carbon isotopes during photo-
synthesis (Singhal et al., 1997). Stable carbon isotope
ratio analysis to detect the undeclared presence of cane
and corn sugars exists (White, Winters, Martin, &
Rossmann, 1998). However, it is time consuming and
expensive.

The carbon isotope ratio method also has some
drawbacks. Nectars bearing flowering plants are almost
exclusively C-3 whereas cane and corn are C-4 plants.
Beet belongs to C-3 plants and hence beet invert will be
difficult to detect using the stable carbon isotope ratio
as the basis. In studies of authentication of maple syrup,
a deuterium to hydrogen ratio was used to differentiate
between compounds from two different plants with
same photosynthetic pathway (Martin, Martin, Naulet,
& McManus, 1996). Deuterium to hydrogen ratio for
sugars vary among each individual C-3 plants. This can
be a basis for discriminating between honey which is
from a C-3 floral origin plant and beet invert, also a
sugar from the C-3 plant.

Another quality issue in the honey industry is the
authentication of honey based on its floral origin. Many
researchers have used pollen analysis to distinguish
honey types based on its floral origin (Singhal et al.,
1997). Methods that use the flavanoids for floral identi-
fication of honey exists. The flavonoid pattern is
believed to be more useful in determination of geo-
graphical origin than the botanical origin (Singhal et al.,
1997). Gel filtration, ion exchange chromatography, and
starch gel electrophoresis of proteins in honey can also
differentiate floral honey and honey obtained from
sugar-fed bees (White & Kushnir, 1967). However, the
methods are not rapid and are expensive.

Recent attempts have been made to use Fourier
transform infrared (FTIR) spectroscopy to detect adul-
teration in honey (Sivakesava & Irudayaraj, 2001).
Raman spectroscopy is another most promising branch
of vibrational spectroscopy and Fourier transform (FT)
Raman spectroscopy is one of the fastest growing areas
in analytical chemistry today. Since 1986, Raman spec-
troscopy using near infrared excitation has emerged in

the Fourier domain, providing an exciting new pathway
for material characterization. FT-Raman is based on
the scattering of light from near infrared radiation due
to the vibrational energy of the molecules in the sample.
In the case of honey adulteration as discussed earlier,
sugars of different origin differ in their stable carbon
ratio as well as in deuterium to hydrogen ratio. Natural
absorption of energy will be different for different iso-
topes, which can contribute to the distinct classification
of adulterants. General advantages of Raman spectro-
scopy over FTIR are the non-interference of Raman
measurement with the water present in the sample, ease
of sampling and measurement, and minimal fluores-
cence interference (Ozaki, 1999). FT-Raman has been
used for quantitative analysis of vitamin A (Hancewicz
& Petty, 1995) and some compounds of pharmaceutical
interest (Cutmore & Skett, 1993) and structure elucida-
tion (Goral & Zichy 1990; Ozaki, Cho, Ikegaya, Mur-
aishi, & Kawauchi, 1992). An FT-Raman approach for
the authentication of edible oils (Aparicio & Baeten
1998; Marigheto, Kemsley, Defernez, & Wilson, 1998)
and detection of virgin oil adulteration (Baeten, Meu-
rens, Morales, & Apricio, 1996; LiChan, 1994) has been
demonstrated.

FT-Raman spectroscopic methods are simple, rapid,
cost effective, and non-destructive, and hence can be a
method of choice for the detection of adulteration or for
routine analysis. It is necessary to establish proper cali-
bration and validation procedures with data acquisition
protocols for FT-Raman methods. To extract informa-
tion from the complex spectra containing overlapping
absorption peaks, interference effects, and instrumental
artifacts, multivariate analysis is often used.

Most commonly used multivariate statistical methods
are partial least squares (PLS) and principal component
regression (PCR). Data compression, calibration, and
validation are the basis of these methods (Beebe, Pell, &
Seasholtz, 1998). Other multivariate procedures com-
monly used for the classification of objects into groups
or clusters based on a statistical measure are dis-
criminant analysis: linear discriminant analysis (LDA)
and canonical variate analysis (CVA). For a successful
application of these methods certain factors such as
proper choice of spectral range, stability of the spectra,
and the number of variables employed in the calibration
model should be given consideration. Detection of
honey adulteration with an FT-Raman approach has
not been attempted.

This study uses an FT-Raman approach to predict the
degree of adulteration and the type of adulterant in
honey. Differentiating similar sugars from different
plant sources by traditional methods such as HPLC is
not possible. The present research uses an FT-Raman
approach to detect beet and cane invert sugar in honey.
The main objectives of this study were to investigate the
potential of FT-Raman spectroscopy (1) to characterize
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the honey from three different floral sources, (2) to
quantify the beet invert and cane invert adulterants and
classify based on their levels for quality grading pur-
poses, and (3) to develop the calibration and validation
models for classification based on the type of adulter-
ants.

2. Materials and methods

2.1. Samples

Pure honey samples of Clover, Orange and buck-
wheat (floral origin) were obtained from Sioux Honey
Association, Sioux City, IA and adulterated with dif-
ferent quantities of medium invert beet and cane syrup.
Liquid beet and cane invert sugar samples were
obtained from Imperial Sugar Company (Sugar Land,
TX). A set of 47 adulterated samples in the range
between 2 and 25% (w/w) with increments of 0.5% were
prepared for each adulterant. These ranges were chosen
to demonstrate the adulteration detection limit in honey
adulteration studies. Twelve of these were used for vali-
dation, the remaining were used for calibration. Sam-
ples were mixed well and kept at room temperature to
equilibrate before FT-Raman measurements.

2.2. FT-Raman measurements

FT-Raman spectra were obtained using a Nicolet 870
spectrometer with the Nicolet Raman module 32B
(Madison, WI, USA) and HeNe laser operating at 1064
nm with a maximum power of 2 W. The system was
equipped with an InGaAs (Indium-Gallium Arsenide)
detector, XT-KBr beam-splitter with 180� reflective
optics, and a fully motorized sample position adjust-
ment feature. A laser output power of 2 W was used,
which was low enough to prevent possible laser induced
sample damage and a high signal to noise ratio. Data
were collected at 16 cm�1 resolution with 256 scans.
Spectra were obtained in the Raman shift range between
200 and 4000 cm�1. The system was operated using the
OMNIC 5.1 software and the experiments were repli-
cated three times.

2.3. Chemometrics

PLS and PCR algorithms were used for quantitative
analysis. Discriminant analysis (LDA and CVA) was
used to detect the presence of adulterants and to differ-
entiate between the two different types of adulterants in
honey.

2.3.1. Quantitative analysis
For quantitative analysis, the PLS (Haaland & Tho-

mas, 1988) and PCR methods (Martens & Naes, 1988)

from Grams 32 software package was used (Galactic
Industries Corporation, Salem, NH). Original and 1st
derivative transformed spectra were used for calibration
models and the optimum number of calibration factors
was selected based on predicted residual sum of squares
(PRESS), which should be minimized, along with the R2

values from regression. The predictability of the models
was tested by computing the standard error of calibra-
tion (SEC) for the calibration data set and standard
error of prediction (SEP) for validation data set. Cross
validation was used to estimate the performance of the
models developed (Beebe et al., 1998).

2.3.2. Discriminant analysis
The Win-DAS (Wiley, Chichester: United Kingdom)

software package was used for discriminant analysis.
Area normalization of spectroscopic data was per-
formed to compensate for gross differences in the spec-
tral response caused by the physical effects, such as
instrumental artifacts. Based on the quantity of invert
sugar adulterants added adulterated honey samples
were classified into three groups of 2.0–8.0, 8.5–18.0,
and 18.5–25.0% respectively. Such classification will be
useful in assigning grades based on quality. LDA, and
CVA were the two methods of discriminant analysis
used for the purpose of multiple group classification.
Multi-dimensional data, in which the number of vari-
ates was larger than the number of observations, cannot
be used directly in the above methods. Hence, data
compression methods such as PCA and PLS were
employed to transform the data set comprising of a
large number of inter-correlated variates (wave num-
bers) into a reduced new set of variates and then CVA
was applied. This process was respectively denoted as
PCA-CVA and PLS-CVA in the text. The purpose of
using discriminant analysis was to classify based on the
concentration of adulterants.

3. Results and discussion

3.1. Objective 1: characterization of honey using FT-
Raman spectra

FT-Raman spectra of pure clover, buckwheat, and
orange honey are shown in Fig. 1. Honey samples show
a majority of the spectral peaks in the 300–1500 cm�1

region. Whereas two more peaks were observed at 2945
and 3384 cm�1 in the spectra. In the region between 300
and 1500 cm�1, peaks were observed at 353, 423, 518,
630, 704, 775, 824, 866, 915, 981, 1072, 1126, 1267,
1374, and 1461 cm�1. Matching peaks obtained for
honey with those observed by Twardowski and Anzen-
bacher (1994) with the tentative bonds assignment cor-
responding to the fundamental group are given in
Table 1.
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As the carbohydrate composition varies to a greater
scale among the different types of honey compared to
amino acids and organic acids, the analysis of the region
representing carbohydrates may not be sufficient to
characterize honey samples. Hence, selecting a region
that shows a combination of absorption due to different
compounds such as carbohydrates, proteins or amino
acids, and organic acids for analysis is necessary. The
spectral region between 200 and 1600 cm�1 was found
to be of prime interest because it represents the vibra-

tional modes of different bonds from carbohydrates,
proteins, and organic acids. As shown in Fig. 1, the
peaks observed at 353 cm�1 was minor, whereas the
peak at 423 cm�1 was sharp and distinct. Both these
peaks may be due to unknown bond vibrations from
carbohydrates and proteins (amino acid) in honey. The
major and sharp peaks at 518 and 630 cm�1 and minor
peaks at 704 and 775 cm�1 were attributed to unknown
bond vibrations of carbohydrates (Twardowski &
Anzenbacher, 1994). The peak at 824 cm�1 was of

Fig. 1. FT-Raman spectra of pure honey from different floral sources.
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moderate intensity and may be due to unknown vibra-
tions. A moderate peak at 866 cm�1 was found to be
due to the vibration of C (1)-H (i.e. bond at first carbon
of sugars) of carbohydrates, whereas the minor peak at
915 cm�1 was attributed to the combination of the
bending vibration of C (1)-H and COH and the peak at
981 cm�1 was due to an unknown vibration.

A strong peak at 1072 cm�1 could arise due to a
major contribution by the bending vibration of C(1)-H
and COH in carbohydrates and a minor contribution
(due to low concentration in honey) due to the vibration
of C–N bond in proteins and amino acids. Whereas a
combined effect of vibration of an unknown bond of
carbohydrates (major) and C–N bond of protein and
amino acids (minor) may result in another strong peak
at 1126 cm�1. A strong and sharp peak at 1267 cm�1

was reported for the vibration of C (6)-OH and C (1)-
OH of carbohydrate with minor contribution form
amide III vibration of the peptide bond (Twardowski &
Anzenbacher, 1994). Bending of C–H and O–H bonds
resulted in a moderate and broad peak at 1374 cm�1.
The combination vibration of CH2 group (bending) and
minor contribution from the COO� group may be
exhibiting a strong and sharp peak at 1461 cm�1. This
COO� group may be due to amino acids or organic
acids in honey. Other moderate and broad peaks at
2945 and 3384 cm�1 are known to be due to stretching
vibrations of CH and OH groups (Twardowski &
Anzenbacher, 1994). Similarly, FT-Raman spectra for
pure cane and beet invert syrups are shown in Fig. 2.

3.2. Objective 2: quantification of adulterant and
classification for quality grading using discriminant
analysis

For predicting the quantity of adulterant in honey
samples (i.e. quantitative analysis) calibration and vali-
dation models were developed. PLS was found to be
superior to PCR analysis and hence used for quantita-
tive studies. Table 2 lists the results of statistical analy-
sis. For clover honey, the calibration and validation
models for the prediction of adulterants such as beet
and cane inverts had an R2>0.94 and SEC <2.52 and
SEP <2.20. Similar trends were observed for buck-
wheat and orange honey. For buckwheat honey, R2

value for the model was more than 0.94 for beet as well
as for cane invert adulteration prediction models (SEC
was less than 2.32). An R2 value of 0.93 and 0.91 was
obtained for the cane and beet invert adulterated orange
honey, respectively. In general, for the floral types ana-
lyzed, the ‘‘beet invert adulteration model’’ shows a
slightly higher correlation compared with the ‘‘cane
invert adulteration model’’. The number of factors for
the ‘‘beet invert adulteration model’’ was found to be 4
whereas for the ‘‘cane invert adulteration model’’ it was
3. The predictive models had an acceptable accuracy
with low errors and number of factors.

Predicting or classifying honey based on adulterant
concentration will be a useful tool in overall quality
assessment. Sometimes, when it is not essential to know
the exact concentration of adulterants in the product,
discriminating between different concentration ranges
or groups might be important in overall quality assess-
ment. This was demonstrated by classifying honey with
adulterant concentration ranges between 2.0 and 8.0%,
8.5–18.0%, and 18.5–25.0% in the honey types con-
sidered. Each floral type of honey was studied sepa-
rately with each of the adulterant (i.e. each honey with
one adulterant at a time) and the model results are given
in Table 3. The spectral range between 200 and 1600
cm�1 as used for discriminant analysis. CVA analysis of

Table 1

Fuctional groups and vibrational modes obtained for the FT-Raman

spectra of pure honey

Band position

in Raman

spectra, cm�1

Assignment of bonds Mode of

vibration

353 Unknown carbohydrate and protein –

423 Unknown carbohydrate and protein –

518 Unknown carbohydrate –

630 Unknown carbohydrate –

704 Unknown carbohydrate –

775 Unknown carbohydrate –

824 Unknown –

866 C(1)H –

915 C(1)H and COH Bending

981 Unknown –

1072 C(1)H and COH Bending

C-N (protein or amino acids) –

1126 Unknown carbohydrate –

C-N (protein or amino acids) –

1267 C(6)OH and C(1)OH –

Amide III (peptide bond) –

1374 CH and OH Bending

1461 CH2 Bending

COO� –

2945 CH Stretching

3384 OH Stretching

Table 2

Quanitative analysis using PLS for predicting adulterant concentra-

tion

Factors R2 SEC R2 SEP

Clover honey

Beet invert 4 0.945 2.277 0.943 1.950

Cane invert 3 0.936 2.521 0.933 2.195

Buckwheat honey

Beet invert 4 0.950 2.227 0.917 1.574

Cane invert 3 0.941 2.315 0.952 2.059

Orange honey

Beet invert 4 0.935 2.348 0.928 2.151

Cane invert 3 0.914 2.765 0.909 2.014
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PCA compressed data (CVA-PCA) was found to be
superior to other methods. Hence, CVA-PCA was used
for the discriminant analysis of honey into arbitrary
grades based on the amount of adulterants. For clover
honey, the classification accuracy was greater than 99
and 96% for calibration and validation models, respec-
tively (for both beet and cane invert adulteration mod-
els). The classification accuracy for buckwheat honey
was about 96 and 100% for the calibration and valida-

tion data sets, respectively. Whereas in the case of
orange honey, the classification accuracy was greater
than 96% for both calibration and validation models
for the two adulterants studied. The number of factors
for the ‘‘beet invert adulteration model’’ for all honey
samples as in the range of 2–4 whereas those for the
‘‘cane invert adulteration model’’ were between 4 and 5;
thus demonstrating the validity of the models to classify
adulterated samples accurately into arbitrary groups.

Fig. 2. FT-Raman spectra of pure cane and beet invert syrups.
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Such classification can be applied in quality grading of
honey.

3.3. Objective 3: Classification of beet and cane invert in
three-selected honey varieties

Two different analysis were conducted. In the first
study, samples of adulterated honey from all floral

sources were considered together for analysis based on
the type of adulterant (i.e. beet invert or cane invert). In
the second study, honey from each floral type was taken
separately with its adulterants (beet and cane invert)
and the base calibration and validation models were
developed.

In the combined discriminant analysis study to clas-
sify beet and cane invert in honey, irrespective of floral

Table 3

Discrimination analysis of honey using PCA compressed data in CVA: for classification based on quantity of adulteration

Factors % Correct discrimination

of calibration samples

% Correct discrimination

of validation samples

Clover honey

Beet invert 2 98.57 100.00

Cane invert 4 98.57 95.83

Buckwheat honey 4 95.71 100.00

Beet invert 4 98.57 100.00

Cane invert

Orange honey

Beet invert 4 95.65 100.00

Cane invert 5 95.71 95.83

Fig. 3. Combined model to discriminate honey based on the type of adulterant.
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types, PLS compressed data with CVA (PLS-CVA)
using the spectra in the range of 200–1600 cm�1 gave
better prediction and hence used in analysis. Here, beet
invert adulterated honey samples of clover, buckwheat,
and orange were used as one group, and the cane invert
adulterated honey samples from the same floral origins
were used as the second group. Fig. 3 presents, a plot of
CV1 with respect to observation numbers for the com-
bined discrimination analysis with samples of different
floral groups of honey separating together based on the
type of adulterant in honey (i.e. beet invert adulterated
honey as classified as one group and cane invert adult-
erated honey samples as the other). Discriminant ana-
lysis by PLS-CVA shows a classification accuracy of
about 90% for calibration data set and 91% for the
validation data set with a factor of 10. In this study, a
discrimination model for the discrimination of honey
adulterants was developed irrespective of its floral
sources. Such a model can be used to predict adultera-
tion in honey when the floral source is not known. The
accuracy can be improved if separate adulterant classi-
fication models could be developed for honey from each
honey variety.

The second study, which examines the development of
discriminant models for honey from each floral source
in the spectral range 200–1600 cm�1 was accomplished
using the PCA-CVA method (Table 4). The percentage
of correct classification of honey samples from all the
floral sources was about 96% for both calibration and
validation data sets. The number of factors in the dis-
criminant model were between 5 and 6. Development of
models for each of the honey varieties from different
floral sources will help to quantify beet or cane invert
adulteration in honey of known and mono-floral source.
Here we can directly use the respective model developed
for specific floral source.

The differences observed by the FT-Raman spectro-
scopy between honey and invert syrup adulterants may
be due to the stable carbon (13C–12C) and/or hydrogen
(deuterium to hydrogen) ratios, oligosaccharides, amino
and organic acids acid as explained earlier. The most
important contributor might be the differences in the
stable isotope ratios. Since Raman spectroscopic mea-
surements are based on the vibrational energy of the
molecules that constitute the sample, natural absorption
of energy is expected to be different for different iso-

topes and would contribute to the classification of
adulterants (Twardowski & Anzenbacher, 1994).

4. Conclusion

FT-Raman spectroscopy was successfully applied to
detect invert syrup adulteration in three different floral
types of honey. The most promising finding is that FT-
Raman method can also be used to discriminate
between the type of adulterants, such as beet and cane
inverts in honey, irrespective of its floral origin. Predic-
tion can be improved if standard calibration and vali-
dation models are developed for each floral type of
honey. Developing separate models for all the commer-
cially available mono-floral varieties of honey can prove
to be of great use in the future in establishing their
authenticity whereas a combined model can be used to
detect cane and beet inverts in honey of unknown or
mixed floral source. For complete study, several vari-
eties of honey from key geographical areas must be
analyzed and characterized.
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